1. 首页
  2. 股票

回归分析法的分类(浅谈股票回归分析方法)

一、回归分析法的分类

回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。

回归分析法预测是利用回归分析方法,根据一个或一组自变量的变动情况预测与其有相关关系的某随机变量的未来值。

进行回归分析需要建立描述变量间相关关系的回归方程。

根据自变量的个数,可以是一元回归,也可以是多元回归。

根据所研究问题的性质,可以是线性回归,也可以是非线性回归。

非线性回归方程一般可以通过数学方法为线性回归方程进行处理。

二、利用回归分析的方法

文内容需要包括以下要点。


1

该股票过去五年日收益率、
日波动幅度、
交易量的总体及各年的描述性统
计(用平均值、中位数、标准差、离差等指标进行分析)


2

上证综指过去五年日收益率、
日波动幅度、
交易量的总体及各年的描述性
统计(用平均值、中位数、标准差、离差等指标进行分析)


3

利用相关系数的统计方法,
分析该股票日收益率与上证综指日收益率之间
的关系,并分析各年是否有较大的差异;

4

利用回归分析的方法,
计算该股票的贝塔值,
并分析各年是否有较大的差
异;

5

利用相关系数的统计方法,
分析该股票日波动幅度与该股票的成交量的对
数之间的相关关系,并分析各年是否有较大的差异;

6

利用相关系数的统计方法,
分析该股票日波动幅度与上证综指的日波动幅
度以及日成交量的对数之间的相关关系,并分析各年是否有较大的差异;

7

利用回归分析的方法,分析该股票日波动幅度的影响因素;

8

对上述的问题进行综合,总结股票的量价关系;

三、常见的回归分析方法有哪些

1/6分步阅读
1.线性回归方法:通常因变量和一个(或者多个)自变量之间拟合出来是一条直线(回归线),通常可以用一个普遍的公式来表示:Y(因变量)=a*X(自变量)+b+c,其中b表示截距,a表示直线的斜率,c是误差项。

如下图所示。


2/6
2.逻辑回归方法:通常是用来计算“一个事件成功或者失败”的概率,此时的因变量一般是属于二元型的(1 或0,真或假,有或无等)变量。

以样本极大似然估计值来选取参数,而不采用最小化平方和误差来选择参数,所以通常要用log等对数函数去拟合。

如下图。


3/6
3.多项式回归方法:通常指自变量的指数存在超过1的项,这时候最佳拟合的结果不再是一条直线而是一条曲线。

比如:抛物线拟合函数Y=a+b*X^2,如下图所示。


4/6
4.岭回归方法:通常用于自变量数据具有高度相关性的拟合中,这种回归方法可以在原来的偏差基础上再增加一个偏差度来减小总体的标准偏差。

如下图是其收缩参数的最小误差公式。


5/6
5.套索回归方法:通常也是用来二次修正回归系数的大小,能够减小参量变化程度以提高线性回归模型的精度。

如下图是其惩罚函数,注意这里的惩罚函数用的是绝对值,而不是绝对值的平方。


6/6
6.ElasticNet回归方法:是Lasso和Ridge回归方法的融合体,使用L1来训练,使用L2优先作为正则化矩阵。

当相关的特征有很多个时,ElasticNet不同于Lasso,会选择两个。

如下图是其常用的理论公式。

原创文章,作者:爱视财经,如若转载,请注明出处:https://www.ishizhuan.com/archives/68125.html